104年大學學科能力測驗
數學科参考詳解

《單一選擇題》

1. 每週同一時間點記錄某植物的成長高度，連續五週的數據為
 \[a_1 = 1, a_2 = 2, a_3 = 6, a_4 = 15, a_5 = 31 \]
 請問此成長高度數列滿足下列選項中哪一個式子？
 (1) \(a_t + 3a_{t-1} = 1, 2, 3, 4, 5\) \(t = 1, 2, 3, 4, 5\)
 (2) \(a_t = t!, t = 1, 2, 3, 4, 5\)
 (3) \(a_t = 2^{t-1}, t = 1, 2, 3, 4, 5\)
 (4) \(a_t = t^2 - t, t = 1, 2, 3, 4, 5\)
 (5) \(a_t = t^2 + t, t = 1, 2, 3, 4, 5\)

 【解】
 將各選項的 \(a_1 \sim a_5\) 列出，符合題意者正確。
 (1) 此為遞迴關係式，若 \(a_1 = 1\) (題意)，則 \(a_2 = 2, a_3 = 5, a_4 = 14, a_5 = 41\)
 (2) 此為一般式，\(a_t = 1, 2, 3, 6, a_4 = 24, a_5 = 120\)
 (3) 此為遞迴關係式，若 \(a_1 = 1\) (題意)，則 \(a_2 = 2, a_3 = 6, a_4 = 15, a_5 = 31\)
 (4) 此為一般式，\(a_t = 1, 3, 7, a_4 = 15, a_5 = 65\)
 (5) 此為遞迴關係式，若 \(a_1 = 1\) (題意)，則 \(a_2 = 2, a_3 = 5, a_4 = 15, a_5 = 31\)

 故選(3)

2. 第1天獲得1元、第2天獲得2元、第3天獲得4元、第4天獲得8元、依此每天所獲得的錢為前一天的兩倍，如此進行到第30天，試問這30天所獲得的錢，總數最接近下列哪一個選項？
 (1) 10,000元 (2) 1,000,000元 (3) 100,000,000元 (4) 1,000,000,000元 (5) 1,000,000,000,000元

 【解】
 依題意，第n天的錢為 \(2^{n-1}\) 元
 則這30天所獲得錢，「總數」
 \[
 1 + 2 + 2^2 + 2^3 + \ldots + 2^{29} = \frac{2^{30} - 1}{2 - 1} = 2^{30} - 1 \approx 2^{30}
 \]

 [法一]
 取 \(\log\) 知：
 \[
 \log 2^{30} = 30 \cdot \log 2 = 30 \times 0.3010 = 9.03 = 9 + 0.03 = \log 10^9 + \log 1.03 = \log (1.03 \times 10^9)
 \]
 \[
 2^{30} = 1.03 \times 10^9, \text{ 最接近 } 1,000,000,000 \text{ 元，故選(4)} \]

 [法二]
 \[
 2^{30} = (2^{10})^3 = 1024^3 \approx 1000^3 = 10^9, \text{ 故選(4)} \]

3. 有兩組供機器運作的配件A、B，其單獨發生故障的機率分別為0.1、0.15。只有當A、B都發生故障時，此機器才無法運作。A、B兩配件若用串接方式，前面故障會導致後面故障，但若後面故障則不會影響前面的故障情形；若用並列方式，則故障情形互不影響。若考慮以下三種情形：
 (一) 將B串接於A之後
 (二) 將A串接於B之後
 (三) 將A、B獨立並列

 在情況(一)、(二)、(三)之下，機器無法運作的機率分別為 \(p_1\)、\(p_2\)、\(p_3\)。請選出正確的選項
 (1) \(p_1 > p_2 > p_3\) (2) \(p_2 > p_1 > p_3\) (3) \(p_3 > p_2 > p_1\) (4) \(p_3 > p_1 > p_2\) (5) \(p_1 = p_2 = p_3\)

 【解】
 若均故障才會使得機器無法運作
 \[
 \therefore p_1 = p(\text{兩者均故障}) = p(A \text{ 故障}) = 0.1
 \]
 \[
 p_2 = p(\text{兩者均故障}) = p(B \text{ 故障}) = 0.15
 \]
 \[
 p_3 = p(A \text{ 故障} \cap B \text{ 故障}) = p(A \text{ 故障}) \cdot p(B \text{ 故障}) = 0.1 \times 0.15 = 0.015
 \]
 \[
 p_2 > p_1 > p_3, \text{ 故選(2)}
 \]
4. 一線性規劃問題的可行解區域為坐標平面上的正八邊形 $ABCDEFGH$ 及其內部，如右圖。已知目標函數 $ax + by + 3$ (其中 a, b 為實數)的最大值只發生在 B 點。請問當目標函數改為 $3 - bx - ay$ 時，最大值會發生在哪一點？
(1) A (2) B (3) C (4) D (5) E

【解】設 $H(x_1, y_1), A(x_2, y_2), B(x_3, y_3), C(x_4, y_4)$，且此正八邊形對稱於直線 $y = x$ 以下的對稱點 $G(y_1, x_1), F(y_2, x_2), E(y_3, x_3), D(y_4, x_4)$
利用平行線法，$ax + by + 3$ 在 B 點有唯一最大值，則在 F 點有唯一最小值，
又常數不影響極值：$ax + by$ 的最大值為 $ax_3 + by_3$，最小值為 $ay_2 + bx_2$。
欲求 $3 - bx - ay$ 的最大值，即求 $-bx - ay$ 的最大值，故求 $bx + ay$ 的最小值。
由上討論知：$bx + ay$ 的最小值為 $bx_2 + ay_2$，此時點坐標 (x_2, y_2) 為 A 點，故選(1)

《多重選擇題》

5. 小明參加某次路跑10公里組的比賽，下表為小明手錶所記錄之各公里的完成時間、平均心率及步數：

<table>
<thead>
<tr>
<th>公里</th>
<th>完成時間</th>
<th>平均心率</th>
<th>步數</th>
</tr>
</thead>
<tbody>
<tr>
<td>第一公里</td>
<td>5:00</td>
<td>161</td>
<td>990</td>
</tr>
<tr>
<td>第二公里</td>
<td>4:50</td>
<td>162</td>
<td>1000</td>
</tr>
<tr>
<td>第三公里</td>
<td>4:50</td>
<td>165</td>
<td>1005</td>
</tr>
<tr>
<td>第四公里</td>
<td>4:55</td>
<td>162</td>
<td>995</td>
</tr>
<tr>
<td>第五公里</td>
<td>4:40</td>
<td>171</td>
<td>1015</td>
</tr>
<tr>
<td>第六公里</td>
<td>4:41</td>
<td>170</td>
<td>1005</td>
</tr>
<tr>
<td>第七公里</td>
<td>4:35</td>
<td>173</td>
<td>1050</td>
</tr>
<tr>
<td>第八公里</td>
<td>4:35</td>
<td>181</td>
<td>1050</td>
</tr>
<tr>
<td>第九公里</td>
<td>4:40</td>
<td>171</td>
<td>1050</td>
</tr>
<tr>
<td>第十公里</td>
<td>4:34</td>
<td>188</td>
<td>1100</td>
</tr>
</tbody>
</table>

在這10公里的比賽過程，請依據上述數據，選出正確的選項。
(1) 由每公里的平均心率得知小明最高心率為128
(2) 小明此次路跑，每步距離的平均小於1公尺
(3) 每公里完成時間和每公里平均心率的相關係數為正相關
(4) 每公里步數和每公里平均心率的相關係數為正相關
(5) 每公里完成時間和每公里步數的相關係數為負相關

【解】(1) 平均心率為188，表示每時刻的心率有高有低，平均才會到188，故最高心率不為188
(2) 每步距離 (公尺) $= \frac{10000}{10260} < 1$(公尺)
(3) 完成時間較短時，平均心率較高，故為正相關
(4) 步數較多時，平均心率較高，故為負相關
(5) 步數較多時，完成時間較短，故為負相關
故選(2)(4)(5)
6. 設 \(f(x) \) 是首項係數為1的實係數二次多項式。請選出正確的選項。

(1) 若 \(f(2) = 0 \)，則 \(x - 2 \) 可整除 \(f(x) \)

(2) 若 \(f(2) = 0 \)，則 \(f(x) \) 為整係數多項式

(3) 若 \(f(\sqrt{2}) = 0 \)，則 \(f(-\sqrt{2}) = 0 \)

(4) 若 \(f(2i) = 0 \)，則 \(f(-2i) = 0 \)

(5) 若 \(f(2i) = 0 \)，則 \(f(x) \) 為整係數多項式

【解】

(1) 若 \(f(2) = 0 \)，表示 \(f(x) \) 有一次因式 \(x - 2 \)，但不能保證其係數是否為整數

(2) \(f(x) \) 有「實係數」多項式才正確

(3) \(f(x) \) 要為「有理係數」多項式才正確

(4) 若 \(f(2i) = 0 \)，則 \(f(-2i) = 0 \)

(5) 同(4)，二次方程式 \(f(x) = 0 \) 有兩根為 \(2i, -2i \)，且領導係數為1

則 \(f(x) = (x - 2i) \cdot (x + 2i) = x^2 + 4 \) 為整係數多項式

故選(1)(4)(5)

7. 坐標平面上，在函數圖形 \(y = 2^x \) 上，標示 \(A, B, C, D \) 四個點，其 \(x \) 坐標分別為 \(-1, 0, 1, 2 \)。請選出正確的選項。

(1) 点 \(B \) 落在直線 \(AC \) 下方

(2) \(y = 2^x \) 圖形四向上

(3) \(A, B, C, D \) 四個點，以點 \(B \) 最靠近 \(x \) 軸

(4) \(y = 2^x \) 與 \(y = 2^x \) 的圖形有兩個交點

(5) \(A \) 與 \(C \) 對稱於 \(y \) 軸

【解】

(1) \(y = 2^x \) 圖形凹向上

(2) \(y = 2^x \) 圖形凹向上且嚴格遞增

(3) \(A \) 點的 \(y \) 坐標最小

(4) \(y = 2^x \) 與 \(y = 2^x \) 的圖形有兩個交點

(5) \(A \) 與 \(C \) 對稱於 \(y \) 軸

故選(1)(2)(4)

8. 坐標平面上有一雙曲線，其漸近線為 \(x - y = 0 \) 與 \(x + y = 0 \)。關於此雙曲線的性質，請選出正確的選項。

(1) 此雙曲線的方程式為 \(x^2 - y^2 = 1 \) 或 \(x^2 - \frac{y^2}{r^2} = -1 \)，其中 \(r \) 為非零實數

(2) 此雙曲線的貫軸長等於共軸軸長

(3) \(a, b \) 為此雙曲線第一象限上一點，則當 \(a > 1000 \) 時，\(|a - b| < 1 \)

(4) \(a, b \)、\(a', b' \) 為此雙曲線第一象限上兩點且 \(a < a' \)，則 \(b < b' \)

(5) 此雙曲線同時對稱於 \(x \) 軸與 \(y \) 軸

【解】漸近線為 \(x - y = 0 \) 與 \(x + y = 0 \) \(\therefore \) 可設雙曲線為 \((x - y)(x + y) = k \) \(\Rightarrow x^2 - y^2 = k \)

\[\frac{x^2}{k} - \frac{y^2}{k} = 1 \]

表示此雙曲線中，\(a^2 = b^2 \) \(\Rightarrow a = b \) \(: \) 為等軸雙曲線，且中心點為 \((0, 0) \)

(1)(2)(5) 正確

(3) \(P(a, b) \) 在雙曲線上 \(\therefore \)

\[\begin{align*}
\frac{a^2}{k} - \frac{b^2}{k} &= 1 \\
\Rightarrow a^2 - b^2 &= k \\
\Rightarrow a - b &= \frac{k}{a + b}
\end{align*} \]

\[|a - b| = \frac{|k|}{a + b} \]

\(|a - b| \) 與 \(k \) 有關係，當 \(k \) 相當大時，不合

(4) 不論是「上下雙」或「左右雙」，在第一象限均為嚴格遞增函數，故正確

故選(1)(2)(4)(5)
9. 如圖，以 M 為圓心，\(\overrightarrow{MA} = 8\) 為半徑畫圓，\(\overrightarrow{AE}\) 為該圓直徑，B、C、D三點皆在圓上，且\(\overrightarrow{AB} = \overrightarrow{BC} = \overrightarrow{CD} = \overrightarrow{DE}\)。若\(\overrightarrow{MD} = 8(\cos(\theta+90^\circ), \sin(\theta+90^\circ))\)。請選出正確的選項

(1) \(\overrightarrow{MA} = (8\cos \theta, 8\sin \theta)\)
(2) \(\overrightarrow{MC} = 8(\cos(\theta+45^\circ), \sin(\theta+45^\circ))\)
(3)(內積) \(\overrightarrow{MA} \cdot \overrightarrow{MA} = 8\)
(4)(內積) \(\overrightarrow{MB} \cdot \overrightarrow{MD} = 0\)
(5) \(\overrightarrow{BD} = 8(\cos \theta + \cos(\theta+90^\circ), \sin \theta + \sin(\theta+90^\circ))\)

【解】\(ED = DC = CB = BA = \frac{180^\circ}{4} = 45^\circ\)，令 \(\overrightarrow{MD}\) 與 \(x\) 軸正向的夾角為 \(\theta+90^\circ\)

(1) \(\because \angle AMD = 135^\circ \therefore \overrightarrow{MA}\) 與 \(x\) 軸正向的夾角 \((\theta+90^\circ) - 135^\circ = \theta - 45^\circ\)

故 \(\overrightarrow{MA} = 8(\cos(\theta-45^\circ), \sin(\theta-45^\circ))\)

(2) \(\because \angle CMD = 45^\circ \therefore \overrightarrow{MC}\) 與 \(x\) 軸正向的夾角 \((\theta+90^\circ) - 45^\circ = \theta + 45^\circ\)

故 \(\overrightarrow{MC} = 8(\cos(\theta+45^\circ), \sin(\theta+45^\circ))\)

(3) \(\overrightarrow{MA} \cdot \overrightarrow{MA} = |\overrightarrow{MA}|^2 = 8^2 = 64\)

(4) \(\because \angle BMD = 90^\circ \therefore \overrightarrow{MB} \perp \overrightarrow{MD} \Rightarrow \overrightarrow{MB} \cdot \overrightarrow{MD} = 0\)

(5) 由(4)知，\(\angle BMD = 90^\circ \therefore \overrightarrow{MB}\) 與 \(x\) 軸正向的夾角 \((\theta+90^\circ) - 90^\circ = \theta\)

故 \(\overrightarrow{MB} = 8(\cos \theta, \sin \theta)\)

則 \(\overrightarrow{BD} = \overrightarrow{MD} - \overrightarrow{MB} = 8(\cos(\theta+90^\circ), \sin(\theta+90^\circ)) - 8(\cos \theta, \sin \theta)\)

\[= 8(\cos(\theta+90^\circ) - \cos \theta, \sin(\theta+90^\circ) - \sin \theta)\]

《另解》

\[= 8(\cos \theta + \cos(\theta+90^\circ), \sin \theta + \sin(\theta+90^\circ))\]

\[= 8(\cos \theta, \sin \theta) + 8(\cos(\theta+90^\circ), \sin(\theta+90^\circ))\]

\[= \overrightarrow{MB} + \overrightarrow{MD} - \overrightarrow{BD}\]

故選(2)(4)
A. 某一班共有45人，問卷調查有手機與平板電腦的人數。從統計資料顯示此班有35人有手機，而有24人有平板電腦。設：
A為同時有手機與平板電腦的人數 B為有手機但沒有平板電腦的人數 C為沒有手機，但有平板電腦的人數 D為沒有手機，也沒有平板電腦的人數
請選出恆成立的不等式選項。
(1) \(A > B \) (2) \(A > C \) (3) \(B > C \) (4) \(B > D \) (5) \(C > D \)
【解】同時有手機與平板電腦的最多有24人，最少有35人 + 24 - 14 = 45人 \(\Rightarrow \) 14 \(\leq \) A \(\leq \) 24
且 \(B + A = 35 \), \(A + C = 24 \), \(A + B + C + D = 45 \)
(1) 反例：當 \(A = 14 \) 時，\(B = 21 \)，此時 \(A < B \)
(2) \(A + C = 24 \) 當 \(A \) 越小時，\(C \) 越大，即 \(A \) 最大為24時，\(C \) 最小為14時，即 \(A \) 最大為10
表 \(A > C \) 恆成立
(3) \(B + C = 24 \) 且 \(35 = B + A \)
(4) \(D = 45 - (A + B + C) = 45 - (35 + C) = 10 - C \) 且 \(0 \leq C \leq 10 \)
表 \(B > D \) 恆成立，且 \(C \) 不一定大於 \(D \)
故選(2)(3)(4)
《另解》
同時有手機與平板電腦的最多有24人，最少有35人 + 24 - 14 = 45人 \(\Rightarrow \) 14 \(\leq \) A \(\leq \) 24
且 \(B + A = 35 \), \(A + C = 24 \), \(A + B + C + D = 45 \)
則 \(B = 35 - A \) \(\Rightarrow \) 11 \(\leq \) B \(\leq \) 21
\(C = 24 - A \) \(\Rightarrow \) 0 \(\leq \) C \(\leq \) 10
\(D = 45 - (A + B + C) = 45 - (35 + C) = 10 - C \) \(\Rightarrow \) 0 \(\leq \) D \(\leq \) 10
利用上述範圍判斷，必定成立的為(2)(3)(4)，故選(2)(3)(4)
《選填題》
A. 如圖，老王在平地點A測得遠方山頂點P的仰角為13°。老王朝著山的方向前進37公丈後來到點B，再測得山頂點P的仰角為15°。則山高約為_______公丈。
（四捨五入至個位數，\(\tan 13° \approx 0.231, \tan 15° \approx 0.268 \)）
【解】設 \(P \) 對地面的垂足為 \(H \)，且令 \(BH = x, PH = y \)
\[\begin{align*}
\tan 13° &= \frac{y}{37 + x} \quad \Rightarrow \quad 37 + x &= \frac{y}{\tan 13°} \\
\tan 15° &= \frac{y}{x} \quad \Rightarrow \quad x &= \frac{y}{\tan 15°} \\
\Rightarrow \quad y \cdot (\frac{\tan 15° - \tan 13°}{\tan 15° \cdot \tan 13°}) &= 37 \quad \Rightarrow \quad y \cdot (\frac{0.268 - 0.231}{0.231 \cdot 0.268}) &= 37 \quad \Rightarrow \quad y = \frac{37 \times (0.231 \cdot 0.268)}{0.037} \\
&= 231 \times 0.268 = 61.908 \approx 62 \text{ 公丈}
\end{align*} \]
B. 不透明袋中有3白3紅共6個球，球大小形狀相同，僅顏色相異。甲、乙、丙、丁、戊5人依甲第一、乙第二、……、戊第五的次序，從袋中各取一球，取後不放回。試問在甲、乙取出不同色球的條件下，戊取出紅球的機率為_______。
【解】甲乙抽到相異的球，把紅白各拿一顆離開，袋中剩2紅2白，則輪到丙丁戊抽球時，
所求 = \(P(\text{第三次抽到紅球}) = P(\text{第一次抽到紅球}) = \frac{2}{4} = \frac{1}{2} \)
解題教師：林煜家老師

C. 小璨預定在陽台上種植玫瑰、百合、菊花和向日葵等四種盆栽。如果陽台上的空間最多能種8盆，
可以不必擺滿，並且每種花至少一盆，則小璨買盆栽的方法共有_______種。

【解】設玫瑰、百合、菊花、向日葵依次為x, y, z, u盆
則所求即 x + y + z + u ≤ 8 的正整數解方法數
令 x' = x + 1, y' = y + 1, z' = z + 1, u' = u + 1，則 x', y', z', u'為非負整數
∴ x' + y' + z' + u' ≤ 4 的非負整數解方法數 = H_4^2 = C_4^8 = 70 種

D. 平面 x - y + z = 0 與三平面 x = 2, x - y = -2, x + y = 2 分別相交所得的三直線可圈成一個三角
形。此三角形之周長化成最簡根式，可表為 a\sqrt{b} + c\sqrt{d}，其中 a, b, c, d 為正整數且 b < d，則
a = _____, b = _____, c = _____, d = _____

【解】
\begin{align*}
\begin{align*}
x - y &= 2 & \quad \text{交點為} & A(2, 4, 2) \\
x + y &= 2 & \quad \text{和} & B(2, 0, -2) \\
x + y + z &= 0 & \quad \text{以及} & C(0, 2, 2) \\
\end{align*}
\end{align*}
∴ 周長為 4\sqrt{2} + 2\sqrt{6} + 2\sqrt{2} = 6\sqrt{2} + 2\sqrt{6}，即 a = 6, b = 2, c = 2, d = 6

E. 坐標平面上，直線 L_1 與 L_2 的方程式分別為 x + 2y = 0 與 3x - 5y = 0。為了確定平面上某一定點 P
的坐標，從 L_1 上的一點 Q_1 估測得向量 \vec{QP} = (-7, 9)，再從 L_2 上的點 Q_2 估測得向量 \vec{QP} = (-6, -8)
則 P 點的坐標為_____

【解】
\begin{align*}
\begin{align*}
\begin{align*}
Q_1 \in L_1 & \quad \text{設} Q_1(-2t, t), t \in R \\
Q_2 \in L_2 & \quad \text{設} Q_2(5s, 3s), s \in R \\
\end{align*}
\end{align*}
\end{align*}
\begin{align*}
\begin{align*}
\begin{align*}
\vec{Q_1Q_2} &= \vec{QP} + \vec{PQ_2} & \Rightarrow \begin{pmatrix} 5s + 2t & 3s - t & \end{pmatrix} = \begin{pmatrix} 1 & \end{pmatrix} \\
\end{align*}
\end{align*}
\end{align*}
\begin{align*}
\begin{align*}
\begin{align*}
\Rightarrow \begin{cases}
s = 3 \\
t = -8
\end{cases} & \quad \text{Q_1 坐標為} (16, -8)， P 點坐標 = Q_1 + \vec{QP} = (16, -8) + (-7, 9) = (9, 1)
\end{align*}
\end{align*}

F. 小華準備向銀行貸款 3 百萬元當做創業基金，其年利率為 3%，約定三年期滿一次還清貸款的本
利和。銀行貸款一般以複利 (每年複利一次) 計息還款，但給小華創業優惠改以單利計息還款。試
問在此優惠下，小華在三年期滿還款時可以比一般複利計息少繳_______元。

【解】
複利計息需繳 3000000 \times (1 + 3\%)^3 = 3000000 \times 1.092727 = 3278181 元
\begin{align*}
\begin{align*}
\text{單利計息需繳 3000000 \times (1 + 3\% \times 3) = 3000000 \times 1.09 = 3270000 元}
\end{align*}
\end{align*}
∴ 單利計息少繳 8181 元
G. 某一公司，有 A、B、C 三個營業據點，開始時各有 36位營業員。為了讓營業員了解各據點業務狀況，所以進行兩次調動。每次調動都是：

將當時 A 據點營業員中的 \(\frac{1}{6} \) 調到 B 據點、\(\frac{1}{6} \) 調到 C 據點；

將當時 B 據點營業員中的 \(\frac{1}{6} \) 調到 A 據點、\(\frac{1}{6} \) 調到 C 據點；

將當時 C 據點營業員中的 \(\frac{1}{6} \) 調到 A 據點、\(\frac{1}{6} \) 調到 B 據點。

則兩次的調動後，C 據點有 _______ 位營業員。

【解】

轉移矩陣 \(T = \begin{bmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{3}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{2}{6} \end{bmatrix} \)，初始人數：

\(A_0 = \begin{bmatrix} 36 \\ 36 \\ 36 \end{bmatrix} \)

一次調動後人數 \(A_1 = TA_0 = \begin{bmatrix} 36 \\ 36 \\ 42 \end{bmatrix} \)

兩次調動後人數 \(A_2 = TA_1 = \begin{bmatrix} 36 \\ 28 \\ 44 \end{bmatrix} \)：

\(\therefore \) 此時 C 據點有 44 位營業員

II. 有一底面為正方形的四角錐，其展開圖如下圖所示，其中兩側面的三角形邊長為 3, 4, 5，則此角錐的體積為 _______

【解】

角錐的高為 \(\sqrt{3^2 - 2^2} = \sqrt{5} \)，底面積為 \(4^2 = 16 \)：

所求體積 = \(\frac{1}{3} \times 16 \times \sqrt{5} = \frac{16\sqrt{5}}{3} \)
I. 在空間中，一個斜面的「坡度」定義為斜面與水平面夾角 θ 的正切值 $\tan \theta$。若一金字塔(底部為正方形，四個斜面為等腰三角形)的每一個斜面的坡度皆為 $\frac{2}{5}$，如圖。則相鄰斜面的夾角的餘弦函數的絕對值為 ________

【解】如右圖，設金字塔頂端 P 點到底面的垂足為 H，CD 中點為 M

則 $\tan \angle PMH$ 為此金字塔坡度，令 $\frac{PH}{MH} = \frac{2}{5}$，令 $PH = 2t$，$MH = 5t$，$t > 0$

則 $PM = \sqrt{29}t$，$PC = \sqrt{PM^2 + MC^2} = \sqrt{(\sqrt{29}t)^2 + 25t^2} = \sqrt{54t}$，可令 $t = 1$，此時為：底面邊長為 10，側面腰長為 $\sqrt{54}$ 的金字塔

設 B, D 兩點分別在 PA 的垂足均為 N 點，則兩側面夾角 $\angle BND$，令 $BN = h$，則側面三角形面積為 $10 \cdot \sqrt{29} = \frac{\sqrt{54}h}{2}$，由此可得 $h = 10 \cdot \frac{\sqrt{29}}{\sqrt{54}} = \frac{25}{29}$。

故所求 $\frac{25}{29}$

J. 下圖為汽車迴轉示意圖。汽車迴轉時，將方向盤轉動到極限，以低速讓汽車進行轉向圓周運動，汽車轉向時所形成的圓周的半徑就是迴轉半徑，如圖中的 BC 即是。已知在低速前進時，圖中 A 處的輪胎行進方向與 AC 垂直，B 處的輪胎行進方向與 BC 垂直。在圖中，已知軸距 AB 為 2.85 公尺，方向盤轉到極限時，輪子方向偏了 28 度，試問此車的迴轉半徑 BC 為 ________ 公尺。

(小數點後第一位以下四捨五入，$\sin 28^\circ \approx 0.4695$，$\cos 28^\circ \approx 0.8829$)

【解】如圖，$\angle BCA = 28^\circ$，則 $\sin 28^\circ = \frac{AB}{BC} \Rightarrow BC = \frac{AB}{\sin 28^\circ}$

$\Rightarrow BC \approx \frac{2.85}{0.4695} \approx 6.07 \approx 6.1$ 公尺